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1. The current source algorithm for IMC

Here is a review of the current way we handle source photons in IMC.
A source photon is created with a randomly sampled position xp in the zone, a direction Ωp ,

a frequency νp sampled from the appropriate distribution, and a time tp uniformly sampled from
[tn, tn+1]. The source photons each have an energy Ep. The sum of Ep over all of the photons
equals the energy of the source for that time step. In the case of thermal emission in a zone with
volume V , we would have

N∑

p=1

Ep = σPacT 4V∆t, (1)

where N is the number of thermal source photons for that time step, and σP is the Planck mean
opacity.

Census photons do not differ from source photons in any way, except that they all start the
time step with tp = tn.

Then we advance each photon until it reaches the end of the time step. This advance consists
of 4 steps.

Step 1 of this process is to calculate the following quantities: the distance to the zone bound-
ary db(xp,Ωp); the distance to scatter ds = −ln(r)/σs, where r is a randon number uniform in
[0, 1]; and the distance to census dc = tn+1 − tp. We take the minimum of these 3 distances:
dp = Min(db, ds, dc).

Step 2 is to advance the photon a distance dp. We change the photon’s position xp− >
xp + Ωpdp, the photon time to tp + dp/c, and remove an amount of energy Ep[1 − exp(−σadp)]
from the photon. This energy is added into the material, because it represents aborption.

Step 3 is to simulate the physical activity that was supposed to occur at the distance dp. For
example, if dp = ds, we would do a scatter, which would result in a change of Ωp. If dp = db,
we move the photon to a new zone. If dp = dc, we are through advancing the photon in this time
step.

Step 4 is to go back to step 1, unless the photon we are advancing has reached census. Since
we keep increasing tp, the photon will eventually reach census, and the proccess will terminate.

When we are done with all of the photons, we update the matter temperature using the dif-
ference between the emmitted and absorbed energy, and proceed to the next time step.

Let’s look at applying this process to one time step of a problem in thermal equilibrium,
where the matter temperature Tm = the radiation temperature Tr = T0. To simplify things, we’ll
have one zone with volume V and reflecting boundaries, so that we are simulating an infinite
medium. To further simplify, we will assume that σ is independednt of frequency.

We start the simulation with an initial set of Nc photons, each with tp = 0 and initial energies
satisfying

Nc∑

p=1

Ep(t = 0) = aT 4
0 V. (2)

These photons represent the initial radiation energy in the problem. Each of these photons
will be advanced in time from t = 0 to t = ∆t, and each will travel a distance c∆t. So each photon
will reach ∆t with an energy Ep(t = ∆t) = Ep(t = 0)exp(−σc∆t). So the radiation energy density
due to the census photons at the end of the time step will be

Er,census =

Nc∑

p=1

Ep(t = ∆t)
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=

Nc∑

p=1

Ep(t = 0)exp(−σc∆t)

= aT 4
0 Vexp(−σc∆t). (3)

To simulate thermal emission, we will make Ns thermal source photons, each with a different
initial time ti,p, with energies that satisfy

Ns∑

p=1

Ep(t = 0) = acσPT 4
0 V∆t. (4)

We will make the energy of all the thermal source particles equal, so for these particles Ep(t =
ti,p = acσPT 4

0 V∆t/Ns.
Each thermal source photon will move from the time it is created until the end of the time

step. Since ti,p is different for each thermal source photon, they will all reach time ∆t with
different energies Ep(t = ∆t) = Ep(t = 0)exp[−σc(∆t − ti,p)]

The sum of these energies will be

Ns∑

p=1

Ep(t = ∆t) =

Ns∑

p=1

Ep(t = 0)exp[−σc(∆t − ti,p)]

= aT 4
0 Vcσ∆t

1
Ns

Ns∑

p=1

exp[−σc(∆t − ti,p)] (5)

where we have used the assumption that all thermal photons had the same initial energy.
In the limit Ns → ∞,

1
Ns

Ns∑

p=1

exp[−σc(∆t − ti,p)]→ 1
∆t

∫ ∆t

0
exp[−σc(∆t − τ]dτ. (6)

In other words, the sum in Eq.(5) is a Monte Carlo estimate for an integral over all possible
thermal emission times. The integral in Eq.(6) can be performed analytically:

∫ ∆t

0
exp[−σc(∆t − τ]dτ = 1 − exp[−cσ∆t]

cσ
. (7)

Using this expression, we find that, in the limit of a large number of particles, the radiation energy
due to thermally emitted photons at t = ∆t will be

aEr,thermal = aT 4
0 V(1 − exp[−cσ∆t]), (8)

and the sum of Er,census given in Eq.(3), and Er,thermal will be aT 4
0 V , which is the value necessary

to maintain thermal equilibrium. The matter energy will also be the same as the initial value, by
energy conservation.

With a finite number of photons, we will not maintain thermal equilibrium, because the sum
in Eq.(5) will only approximate the integral.

The important point is that, for this infinite medium problem, even with a finite number of
particles, the census photons will give exactly the right value for their contribution to the radiation
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energy, but the thermally emitted photons will not. This happens because the emission is sampled
at discrete times, so the contribution to the radiation energy density at the end of the time step
from the thermal photons is only approximate.

This is illustrated in Fig. 1. This plot shows an IMC simulation using one zone, a cube
with unit length in each direction. All faces have reflecting boundaries, making it effectively
an infinite medium problem. Thr material and radiation temperatures were initialized to 1. The
material has a heat capacity cv = 1.0, and an absorption opacity σ = 10. The simulation used 100
photons per time step, and units were chosen so that a = c = 1. The simulation used ∆t = 0.001
from t = 0 to t = 1, ∆t = 0.01 from t = 1 to t = 2, and ∆t = 0.1 for t > 2.

 0.99

 0.995

 1

 1.005

 1.01

 0  0.5  1  1.5  2  2.5  3

T

t

Tm and Tr in infinite medium problem

Tm
Tr

Figure 1: Matter and radiation temperature for infinite medium test problem using IMC with three different time steps

Fig. 1 shows the statistical noise in the IMC simulation. The noise increases with ∆t. This
happens because the integrand in Eq.(6) changes value more when ∆t is large - the exponential
decay of the energy of the thermal photons is larger over a larger time step. When the integrand
varies more, a Monte Carlo approximation, like the sum in Eq.(6) has a larger variance, so the
statistical noise increases.

As noted above, the noise in the simulation is caused by the choice of emission times for the
thermally emitted photons. If we could eliminate the statistical noise caused by the choice of
the emission time, then the matter and radiation temperature in Fig. 1 would be exactly 1 at all
times, independent of ∆t.

This is illustrated further in Figs. 2 and 3. These plots show the results of simulations that
are the same as that in Fig. 1, except that the problem does not begin in equilibrium and ∆t is
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fixed at 0.001.
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Figure 2: Matter and radiation temperature using IMC for infinite medium test problem with Tr > Tm initially.

In the simulation in Fig. 2, the initial radiation temperature was higher than the initial matter
temperature. Because of the low initial matter temperature, there is less thermal emission at
the beginning of the problem than at late times, and the radiation energy density at early times is
dominated by the initial census photons. As Tm becomes closer to Tr, photons created by thermal
emission become more important. Fig. 2 shows that the radiation temperature is less noisy at
early times, and becomes noisy when Tm becomes closer to Tr.

In Fig. 3, we show the results of a simulation in which Tm is initially much larger than Tr. In
this simulation, thermally emitted photons are always important, and the radiation temperature
shows statistical noise even at early times.

The results of the simulations shown in Figs. 2 and 3 are consistent with the idea that the
thermal photons, because of the statitical noise created by the selection of their emission times,
are the source of statistical noise in infinite medium Monte Carlo simulations.

We have only considered infinite medium problems in this section. In a simulation with mul-
tiple zones, we would also see statistical noise from the random choice of position and direction
of both the thermally emitted photons and the census photons. So eliminating the noise from the
sampling of emission times would not eliminate all statistical noise in more complicated simula-
tions. However, some simulations with opaque zones with small time steps can have zones where
most of the thermally emitted photons are absorbed before leaving the zone. These simulations
could concievably show a reduction of statistical noise if the sampling of the time of thermal
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Figure 3: Matter and radiation temperature using IMC for infinite medium test problem with Tm > Tr initially.

emission was made more accurate.
In the next section, we will discuss a way to eliminate the statistical noise due to the sampling

of emission time.
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2. The speculative new source algorithm for IMC

In the last section, we established that the statistical noise due to the choice of the emission
time of thermal source photons caused the noise in the temperature of infinite medium problems.
In this section, we will show how to eliminate this noise.

In the IMC algorithm, we regard physical quantities like opacity and heat capacity as constant
throughout the time step. This means that quantities like the distance to scatter, and the amount
of absorption on a given photon path are independent of the time during the time step. We can
take advantage of this fact to calculate the contribution that is made for every emission time
between tn and tn+1 for each path taken by a source photon. We will refer to this as the modified
IMC algorithm in the remainder of this document. Census photons, which have a definite time
(specifically, the begining of the time step, tn), are treated in exactly the same as in standard IMC.

The modified IMC algorithm is best illustrated by describing how we simulate the behavior
of a source photon. As in the standard IMC algorithm, we sample a position xp, a direction Ωp
, and a frequency νp. The energy of the source photon, Ep is also sampled in the same way as
standard IMC. However, we do not sample an emission time for the photon. Instead, we will
regard the energy as being “spread out” over the whole time step, from tn to tn+1. The energy
emitted in a small period [te, te + dt] will be dE = Ep

∆t dt. So in the modified IMC algorithm, we
can think of a source photon with a definite emission time and energy Ep as being replaced by
a large number of small sub-photons, with emission times spread out evenly between tn to tn+1,
each with energy dE.

Instead of the source photon having a time that we update as it travels, we will keep track of
how far it travels, which we will denote by sp. The initial value of sp is 0, During the whole time
step, it will travel a total distance c∆t, unless it exits the problem through a boundary.

Since the modified IMC source photon does not have a time, it does not reach census in the
traditional way. Some fraction of its energy will reach census on each path, and some fraction
will be absorbed. These fractions will be functions of the initial and final value of sp on the
path. The total energy Ep(s = 0) of the source photon will be either absorbed, leave the problem
through a boundary, or reach census as the photon reaches sp = c∆t. That is, Ep(sp = c∆t) = 0.

First, we will calculate the amount of energy that reaches census on a given path. We will
characterize the path as extending from s0 to s1 = s0+dp. Since the absorption opacity is constant
during the time step, the energy emitted in a small time period [te, te + dt] (which we can think of
as one of our sub-photons) will change to dE(s0+dp) = dE(s0)[1−exp(−σadp)], independent of
the value of te, on a path of length dp. The sub-photons born between tn+1 − s0/c and tn+1 − s1/c
will reach census during the path, and we want to know the sum of their energies.

When the photon has moved a distance s0, the total energy that our photon has consists of
emission that occured for te in the range [tn, tn+1− s0/c]. This range has a size of tn+1− s0/c− tn =
∆t − s0/c, so

dE(s0) =
Ep(s0)

[∆t − s0/c]
(9)

and
dE(s) = dE(s0)exp[−σ(s − s0)]. (10)

The total energy reaching census is the integral of Eq.(10 over the range [s0, s1]:

Ec(s0, s1) =

∫ s1

s0

dE(s)
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=
Ep(s0)

[∆t − s0/c]

∫ s1

s0

exp[−σ(s − s0)]

=
Ep(s0)

σ[∆t − s0/c]
1 − exp[−σ(s1 − s0)]. (11)

Next, we will calculate the amount of energy that is absorbed on the path from s0 to s1. This
is done by conservation of energy. As thephoton travels from s0 to s1, the energy it has is either
lost to absorption, reaches census, or remains with the photon (in the form of sub-photons that
haven’t reaced census yet. So the photon energy at s1 is related to the photon energy at s0 by

Ea(s0, s1) + Ec(s0, s1) + Ep(s1) = Ep(s0). (12)

We know from Eq.(9) how the energy dE(s) of a sub-photon is related to the energy Ep of the
photon. We can use that to substitute for Ep(s1) in Eq.(12. This results in

Ea(s0, s1) = Ep(s0)(1 − exp[−σ(s1 − s0)])
∆t − s1/c
∆t − s0/c

− Ec(s0, s1). (13)

Although the results in this document show a problem in which the only source is thermal
emission, the modified algorithm could be applied to other photon sources, such as face sources.

The advance of a source photon in the modified IMC algorithm consists of 4 steps.
Step 1 of is to calculate the following two quantities: the distance to the zone boundary

db(xp,Ωp) and the distance to scatter ds = −ln(r)/σs. We take the minimum of these 2 distances:
dp = Min(db, ds).

Step 2 is to advance the photon a distance dp. We change the photon’s position xp− >
xp+Ωpdp, and we update the distance the photon has traveled in this time step sp− > sp+dp. We
calculate the amount of energy that reaches census and the amount that is absorbed via Eqs(11)
and 13. These values are stored in the appropriate arrays, and the energy is removed from the
photon.

Step 3 is to simulate the physical activity that was supposed to occur at the distance dp. For
example, if dp = ds, we would do a scatter, which would result in a change of Ωp. If dp = db, we
move the photon to a new zone. Unlike standard IMC, we do not have a census event, because
energy reaches census on every path.

Step 4 is to go back to step 1, unless the photon we are advancing has traveled a distance
sp = c∆t. As mentioned previously, this will also cause Ep = 0. Since we keep increasing sp,
the photon will eventually run out of energy, and the proccess will terminate.

There is one aditional feature of the modified IMC algorithm that has to do with the fact that
no photons reach census. We have calculated an amount of energy that reaches census in each
zone, through the 4 step proceedure outlied above. In the next time step, we need to represent
this energy with photons. We can do this by randomly copying the source photons as we advance
them. At the end of the time step, we give those copied photons energies that add up to the
energy that reached census in the zone. These photons become census photons for the next time
step, and are advanced like regular IMC photons. This is how the python code that implements
the modified IMC algorithm

Now we will look at results for the test problems described in the previous section calculated
by the modified IMC method. The first test is an infinite medium with initial values Tm = Tr =
1.0. The IMC results were depicted in Fig. 1. The modified IMC results are show in Fig. 4

Fig. 4 shows that there is no statistical noise in the modified IMC simulation for any value
of ∆t. This happens because the source photons in the modified IMC algorithm each contribute
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Figure 4: Matter and radiation temperature for infinite medium test problem using modified IMC with three different
time steps

exactly the amount of energy calculated in Eq.(5) to census. In effect, the integrand in Eq.(6)
is evaluated exactly, not approximately as a sum over a finite number of emission times. The
value of Tr at the end of the time step is 1.0 to roundoff. By conservation of energy, Tm = 1.0
to roundoff at the end of the time step also, and so these values are maintained throughout the
calculation.

Modified IMC results for the problems depicted in Figs. 2 and 3 are shown in Figs. 5 and
6 respectively. Both of these test problems begive out of equilibrium, and in both cases the
modified IMC algorithm produces answers with no statistical noise.

The modified IMC algorithm completely eliminates the statistical noise in these infinite
medium problems. This happens because the only source of statistical noise in these problems in
the emission time. The position and direction of the photons are chosen using random numbers
but do not effect the result. I don’t expect such spectacular results in multi-zone problems. In
those problems, there will be statistical noise from the position and direction, which will show
up in how much energy gets depositied by the source photons that cross zone boundaries.

It is possible that the noise from photons the cross zone boundaries will completely swamp
the reduction in noise we obtain by using the modified IMC algorithm. My hope is that we will
see some reduction in noise in some circumstances. For example, problems with small ∆t and
large σ can have reletively few photons that cross zone boundaries. The modified IMC algorithm
might show less noisy results on these problems.

9



 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  0.05  0.1  0.15  0.2

Tm
Tr

Figure 5: Matter and radiation temperature using modified IMC for infinite medium test problem with Tr > Tm initially.
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Figure 6: Matter and radiation temperature using modified IMC for infinite medium test problem with Tm > Tr initially.
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3. The student project

The IMC results shown in Figs. 1, 2 and 3 were generated by an IMC code written in c++.
I have written a small python code implementing the modified IMC algorithm for an infinite
medium problem. This is how the results shown in Figs. 4, 5 and 6 were generated. I want you
to take the python code and, using that as a guide, put the modified IMC algorithm into the c++
code.

You will have to add a flag to the photon class in the c++ code that will mark the photon as
either a census photon or a source photon. Census photons will be advanced by the same c++
code that they use now. The source photons will be treated by the new code you write. The new
code will be very similar in structure to the already-existing IMC code. The python routines have
almost the same names as the corresponding c++ functions (for example, dBoundary calculated
the distance to the boundary, advanceBoundary takes the photon, calcylated the absorption, and
moves it to the boundary, etc.) So this task shouldn’t be too daunting.

Once the modified IMC algorithm is coded into the IMC code, you can make sure that it
reproduces the infinite medium test results of Figs. 4, 5 and 6. Then we’ll try a multi-zone
problem, like a 1D Marshak wave. An example of a Marshak wave problem is the one by Su and
Olson, JQSRT 56 (1996), p. 337. IMC results for this test problem are shown in Fig. 7.

Figure 7: Matter and radiation energy for Su-Olson Marshak wave using IMC, compared to analytic answers

The Su-Olson Marshak wave has analytic answers, but only because it has a prescribed un-
physical heat capacity and a fixed opacity. I think we want to test the modified algorithm on a
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range of opacities, so we will use a different but similar problem. A more reasonable reasonable
problem would be 10 or 20 zones spanning x = [0, 1], with Tm = Tr = 0.01 and a T = 1 face
source on it. We can change σ and ∆t and see how the noise in the simulation varies.

After that, you make a talk, give it at Livermore. Then you can submit a write-up to an ANS
conference and give the talk again. Possibly we will be able to take the results and this document
and turn it into a paper for Journal of Computational Physics. I think the results in this document
are good enough for an ANS talk, but I think we need to see that the modified IMC method works
on a more realistic problem to make it worth a journal article.
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